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Abstract 

 We have developed a generic prototype of a flood-forecasting model that is transferable 

to other locations around the Midwest to provide monitoring and forecasting flood potential at 

critical infrastructure points, such as bridges, where streamflow gauges are not available. Our 

efforts have centered around creating tools and protocols that would facilitate the implementation 

of the hydrological model in any of the four MATC states. The protocols include 1) a 

methodology to use existing regional data to determine the parameters in the runoff routing 

equation along the river network, 2) a diagnostic methodology to determine infiltration 

parameters controlling rainfall-runoff transformation, and 3) technology transfer between the 

University of Iowa and the University of Nebraska. In this phase, we focus our work in the 

implementation and validation of the methodologies developed during the last phase. 
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Chapter 1 Preliminaries: The Iowa Flood Center HLM hydrological model 

The Iowa Flood Center hydrological model, Hillslope-Link Model (HLM), is a 

distributed hillslope-scale rainfall-runoff model that partitions Iowa into over three million 

individual control volumes following the landscape decomposition outlined in Mantilla and 

Gupta (2005). The model is parsimonious, meaning it uses ordinary differential equations to 

describe transport between adjacent control volumes. This characteristic reduces the 

computational resources needed by capturing the most essential features of the rainfall runoff 

transformation; it uses only a few parameters to obtain acceptable results. The model partitions 

the river network into river links (the portion of a river channel between two junctions of a river 

network) and the landscape into hillslopes (adjacent areas that drain into the links).  

 

  

(a) (b) 
Figure 1.1 (a) illustration of landscape decomposition into hillslopes and decomposition of the 
river network into channel link and (b) vertical soil profile and control volumes included in the 

hydrological model 
 

Mass conservation equations give rise to the system of coupled nonlinear ordinary 

differential equations that represent changes in the water storage in the hillslope surface (ssurf), 

top soil (stops), and deep soil (sdeeps) given by  
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(1.1) 

(1.2) 

(1.3) 

Fluxes in, across, and out of the vertical hillslope control volumes include precipitation 

p(t), overland runoff qrunoff(t), infiltration into the topsoil qinfil, percolation from the topsoil into 

the deeper soils qpercol(t), baseflow into the channel qbaseflow(t), and evaporation from the ponded, 

topsoil, and deep soil layers (esurf(t), etops(t) and edeeps(t), respectively). The model assumes that 

percolation flux is a linear function of the amount of water stored at time t in the topsoil 

qpercol=kpercol·stops and that the baseflow is a linear function of the water stored in deep soil 

qbaseflow=kbaseflow·sdeeps. Overland runoff is a power function of the water stored on the hillslope 

surface (consistent with Manning’s equation) given by 

 

 
(1.4) 

 

and infiltration is a nonlinear function of soil moisture content (stops/Ttops), where Ttops is the 

thickness of the topsoil layer (i.e., A-horizon) and a linear function of hydraulic head ssurf given 

by  

 

 

(1.5) 
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where kdry corresponds to the case of dry soil and, similarly to krunoff, kpercol, and kbaseflow can be 

interpreted as the time constant (residence time) of the respective storage component. The 

hillslope area (ah) for the elements in the distributed model is, on average, 0.05 km², and link 

length (llink) is, on average, 400 m. Note that ah/(2llink) is the hillslope length. The exponent φ is a 

nonlinearity introduced by the change in the potential matric of the soil column as soil moisture 

changes with time. 

The HLM should be thought of as a modeling system rather than a single specific model. 

As the equations describing hillslope-scale processes are separated from the numerical solver, it 

is rather easy to explore different mathematical descriptions for water fluxes. For example, one 

can consider such simplifications as constant runoff coefficient or water transport velocity, or as 

an alternative, one can formulate these components based on the available physical 

characteristics.  

Water transport through the river network is nonlinear and governs how channel links 

propagate flow through the river network. Formulated in the context of a mass conservation 

equation developed by Gupta and Waymire (1998), it uses the water velocity parameterization 

given by Mantilla (2007) as 

 

  (1.6) 
 

where qlink is the discharge from the link at time t, ah is the total hillslope area draining to the 

link, q1(t) and q2(t) are the incoming flows of the upstream tributaries, A is the upstream basin 

area, and λ1, λ2, and v0 are global parameters of the water velocity component of the model and 

are set to 0.2, -0.1, and 0.3, respectively. The model can capture the main features of the 

( )
1 2

1.670
1 2

1

( ) ( ) ( ) ( ) ( ) ( ) ( )
(1 )

link link
h runoff surf baseflow deeps link
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hydrographs including the maximum stage. Several studies used the model (e.g., Ayalew et al. 

2014; Cunha et al. 2012). Krajewski et al. (2017) also discussed the model performance. The 

model is driven by radar-rainfall estimated from Level II NEXRAD data from seven WSR-88D 

weather radars covering the state of Iowa. The maps of rainfall intensity have spatial resolution 

of about 0.25 km2 and are updated every five minutes. The algorithms are described in Krajewski 

et al. (2013) and Seo and Krajewski (2015). 

An important aspect of our modeling approach is the avoidance of calibration. Instead, 

we rely on detailed information of the physical properties we model. This includes the 

topography, land use and land cover, soil properties, and details of the main forcing, i.e., 

precipitation. Comparing simulation results to streamflow observations across Iowa validates the 

model formulation and parameterization. Therefore, we can view the model as data-intensive and 

calibration-free when used in forecast-mode. This, in turn, implies that with more detailed, 

relevant, and accurate data, including model states and physical domain characterization as well 

as the driving inputs, the model will work better. The model is fully automatic in the sense that 

no corrections are applied to the model as it moves forward in time once initial and boundary 

conditions are imposed.  

The model predicts the streamflow fluctuations associated with storm events over the 

catchment of interest using current observations of rainfall, and rainfall forecasts. The effect of 

storms on river ways is usually delayed a time ranging from days to weeks. Each point of interest 

in the landscape (bridge, culvert) can then be categorized according to the maximum warning 

time. The web interface will provide a visual tool to show when a particular location will be 

impacted, and it will provide an inundation map associated to the particular peak flow expected 
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for that location. Inundation maps are more effective tools in communicating the effects of 

flooding than crest stages at specific locations. 
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Chapter 2 Validation of a data approach for the model routing parameterization 

During Phase II, we developed a methodology to estimate the routing parameters of HLM 

using observed flow records. In it, we estimated the routing parameters in relatively small 

watersheds in the state of Iowa by controlling the runoff. Then, we interpolated the routing 

parameters using a set of random forests. In Phase III, we further explored this approach and 

validated it using the records from 120 USGS gauges. Here we present a summary of the 

obtained results. A complete report of this work has been published in (Velásquez et al., 2022). 

2.1 Background 

Our first goal was to identify the routing parameters 𝑣𝑣0 and 𝜆𝜆1 in multiple Iowa 

watersheds. We started by applying combinations of both parameters using a time-step runoff 

controlled (TRC) (see fig. 2.1) modeling scheme which uses streamflow records to estimate the 

correct runoff for fixed time steps. Using the TRC scheme, HLM routes the observed runoff 

volume into the channels. 

 

 

Figure 2.1 Example for a single parametrization of the Time-step controlled runoff strategy 
(TRC). From left to right, the figure presents an example of how TRC adjusts the runoff 

coefficient (RC) to obtain the best possible streamflow 𝑄𝑄 given a rainfall 𝑅𝑅 in a time step 𝑑𝑑𝑑𝑑𝑚𝑚. 
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To apply the TRC strategy, we fixed the values that RC can take and the size of 𝑑𝑑𝑑𝑑𝑚𝑚 and 

𝑑𝑑𝑑𝑑𝑛𝑛. We considered only events with a peak higher than the 25th percentile of the annual peak. 

The RC can take values between 0.0 and 0.9, with a step of 0.1. We set the modeling period 𝑑𝑑𝑑𝑑𝑚𝑚 

equal to three hours, and the no rainfall period 𝑑𝑑𝑑𝑑𝑛𝑛 equal to six hours. Figure 2.2 presents an 

example of the results obtained for an event at Floyd River (Alton, IA). The figure shows the 

changes in the shape of the hydrograph, depending on the values of the parameters 𝑣𝑣0 (rows) and 

λ1 (columns). In this case, 𝑣𝑣0 has more influence over the peak and 𝜆𝜆1 tends to shift the time. 

Moreover, their interplay produces the most significant changes. We applied the TRC strategy 

considering nine groups (or classes) of 𝑣𝑣0 and λ1 pairs. The classes correspond to all the possible 

combinations of 𝑣𝑣0 taking the values of 0.2, 0.3, and 0.4, and 𝜆𝜆1 taking values of 0.15, 0.2, and 

0.25.  

 

 

Figure 2.2 Results of the TRC strategy applied for an event at Floyd River at Alton (USGS 
station 06600100). The frames correspond to the analyzed combinations of 𝜆𝜆1 (columns) and 𝑣𝑣0 

(rows). 
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We applied the TRC strategy to 48 small watersheds using nine different combinations of 

𝑣𝑣0 and 𝜆𝜆1 and several storm events (around 12 per watershed). For each watershed and event, we 

found the best parameter combination that maximizes the performance in terms of peak flow 

magnitude and timing (fig. 2.3a). Then, we obtained the predominant combination for each 

catchment or the local self-similarity case (fig. 2.3b). For this, we chose the 𝑣𝑣0 - 𝜆𝜆1 pair with 

higher counts ranking first in the PMT index. In this procedure, we lost performance obtained at 

the best case by event. However, its peak flow estimation was still better than that of the open-

loop case, which corresponds to one combination of 𝑣𝑣0 and 𝜆𝜆1 for all the SW.  

 

 

Figure 2.3 Observed versus simulated peak flows for the training set events. The green dots 
correspond to peak flow differences lower than the 20%, the dark blue to differences lower than 
the 50%, the ligth blue to differences greater than 50%. The black line indicates the comparison 
of the simulated vs observed P50 for different magnitudes.  a) Comparison of the result of the 

best 𝜆𝜆1 and 𝑣𝑣0 combination for each event, b) Comparison of the best combination by watershed, 
and c) Results obtained with 𝜆𝜆1 = 0.2 and 𝑣𝑣0 = 0.33. 

 

Our results suggested that each analyzed watershed has a routing parameterization that 

varies from one event to the next (fig. 2.3a). We were able to capture a mean value of this 

oscillation with the best by catchment case, obtaining an overall good performance (fig. 2.3b). In 

the best by catchment case, about 88% of the cases produced a peak flow error below 50%, and 
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51% provided a peak flow error below 20%. The same percentages fell to 68% and 33% in the 

open-loop case. While the described results support the idea of the existence of a prevalent 

routing parametrization, the increased performance at best by event case (see legend in figure 

2.3a) suggests that there were heterogeneities at the routing parameters of the channels due to 

changes on the hydraulic geometry. 

2.2 Results 

We interpolated the values of 𝑣𝑣0 and λ1 found for each basin using the ERF 

methodology. We trained and tested 400 RFs to obtain the random forest ensemble. Then, we 

selected the RFs with the best performance. We compared by couples three objective functions 

to determine the performance of each RF. At each comparison, we selected the realizations 

corresponding to the first ten Pareto fronts. We then chose the individuals corresponding to the 

intersection of the three Pareto fronts. After this procedure, we obtained an ERF composed of 74 

individuals. The interpolation of 𝑣𝑣0 and λ1 for all the links of the region corresponded to the 

modal value of the ERF (fig. 2.4). 

Our results showed a spatial distribution of the parameters that followed the landforms of 

the region (fig. 2.4). The map represents lower values for the routing parameters at the Des 

Moines Lobe, medium to high values at the Iowa Surface, medium at the Southern Iowa Drift, 

and high towards the Northwest Iowa Plains and the Loess Hills. The distribution of the 

parameters was linked to hydrological features used to train the Random Forest (fig. 2.4). In this 

process, the ERF gave more relevance to the slope of the channel (𝑆𝑆0), the travel time (𝑇𝑇𝑡𝑡), the 

HUC level 8, and the upstream number of links (𝑁𝑁𝑙𝑙). 
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Figure 2.4 Spatial distribution of 𝑣𝑣0 and λ1 obtained by the ERF interpolation. 
 

According to figure 2.5a, there was an overall improvement; however, it may differ 

across scales. In figure 2.6, we present the distribution of the simulated and observed peak flows 

grouped by area intervals. Regardless of the setup, HLM tended to underestimate peak flows for 

small watersheds (below 1000 km2). However, the setups exhibited differences in watersheds 

with larger areas. Between 1000 and 5000 𝑘𝑘𝑑𝑑2, the three models exhibited small differences at 

the mean and the maximum values. However, in this range the ERF maximum magnitude was 

more accurate. The open-loop setup tended to over-estimate peak flows for upstream areas larger 

than 5000 𝑘𝑘𝑑𝑑2. Contrary to the open loop, the HUCs approach tended to simulate accurate 

median peak flows but under-estimating the maximum values. On the other hand, with the ERF, 

we obtained accurate simulations on both the median and the maximum values. According to the 
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described results, our improvement was more evident over large watersheds (upstream areas 

above 1000𝑘𝑘𝑑𝑑2). 

 

 

Figure 2.5 Simulated vs Observed peaks. a) Open loop setup (orange) and the ERF setup 
(green). b) HUCs setup (orange) and ERF (green).  

 

 

Figure 2.6 Violins of the peak flow ratio variability in function of the upstream area. The black 
violins correspond to the observed data, the orange to the open-loop, the blue to the HUC steup, 

and the green to the ERF setup. 
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In addition to the peak flow magnitude, there was also a change at the simulated time to 

peak difference (Δ𝑑𝑑). To address this change, we computed the mean Δ𝑑𝑑 for each HLM setup at 

the USGS gauges and compared it with the watershed area (fig. 2.7a) and with the mean peak 

flow magnitude difference (fig. 2.7b). Additionally, we obtained the distribution of Δ𝑑𝑑 for each 

setup (fig. 2.7c). In all the cases, the time to peak difference decreased towards zero for large 

areas (fig. 2.7a). For upstream areas larger than 1000𝑘𝑘𝑑𝑑2, open-loop tended to simulate early 

peaks (negative Δ𝑑𝑑) more frequently than the ERF setup. On the other hand, the HUCs setup 

tended towards late peak estimations for all the upstream areas. In addition to the upstream area 

relationship, Δ𝑑𝑑 changed from early to late peaks when the peak flow difference went from over-

estimations to under-estimations (fig. 2.7b). The described relationship was more dispersed in 

the open-loop case and more biased on the HUCs case. On the other hand, the ERF setup, 

corrected some of the observed bias improving both measurements at the time. The overall 

improvement of Δ𝑑𝑑 done by the ERF setup is observed in figure 2.7c. 

 

 

Figure 2.7 Mean peak time difference by gauge. a) Comparison with the station area, b) 
Comparison with the mean peak flow difference by gauge, and c) overall relative time difference 
PDF. In the three plots the black line corresponds to the lowest time difference. In b, the red line 

indicates the lowest peak flow difference.  
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We present the KGE performance of the three setups in figure 2.8a. The KGE for the 

open-loop and ERF setups were similar, while the HUCs were smaller. Similar behavior was 

observed for streamflow gauges with upstream areas below 10,000 𝑘𝑘𝑑𝑑2 (fig. 2.8b). 

Alternatively, the KGE differences increased for large watersheds (fig. 2.8c), similar to the 

descriptions given at the peak flow differences in figure 2.6. We attributed the scale dependent 

differences to the aggregation process done by the streamflow network. The routing parameters 

seemed to amplify the errors and, consequently, the differences downstream. For upstream areas 

larger than 10,000 𝑘𝑘𝑑𝑑2 the HUCs KGE performance decreased, and there were more differences 

between the open-loop and the ERF setups. For large areas, ERF increased the cases with KGE 

values around 0.7, with some values around 0.9. Alternatively, the open-loop had a higher 

frequency around 0.8; however, it also increased the negative KGE count.  

 

 

Figure 2.8 KGE index distribution by reach area. a) Evaluation for all the USGS gages inside 
Iowa, b) evaluation for gages with areas between 0.1 and 10,000 km2, and c) gages with 

upstream areas larger than 10,000 km2. 

 

We obtained some improvement at the estimation of peak flow magnitudes and timing 

using the ERF interpolation. Also, we obtained a spatial distribution of the routing parameters 

that seemed to be coherent with the landforms of the region. Compared with the open loop and 
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HUC parameterization, the ERF parametrization achieved a better representation of the peaks 

across scales. We attributed the improvement to the independent search of parameters through 

the TRC strategy and their posterior regionalization using a machine-learning approach. By 

searching parameters in the SW through the TRC, we corrected the hydrograph volume, which 

allowed us to perform a better identification of the routing parameters. Then, with the ERF, we 

performed a robust and non-linear interpolation of 𝑣𝑣0 and 𝜆𝜆1 based on known hydrological 

features. 

2.3 Conclusions 

We developed a novel approach for parameter regionalization that found adequate values 

for routing parameters and then used an ensemble of random forest to interpolate them. We 

obtained the parameters using only small watersheds (SW) to reduce possible heterogeneities. 

Moreover, we applied a timestep-runoff controlled strategy over the SW to achieve an 

independent search of the routing parameters. We interpolated the found parameter values using 

two techniques: an ensemble of random forest (ERF) and nested HUCs. Then, we ran HLM 

between 2012 and 2018 using the open-loop setup and the ERF and HUCs interpolated fields. 

With the ERF interpolation, we obtained a parameters distribution that improved the model 

performance and followed the landscape of Iowa.  
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Chapter 3 Improvements in Performance of the Hillslope Link Model in Iowa using a Non-linear 

Representation of Natural and Artificially Drained Subsurface Flows 

Flood forecasts calculated using regional distributed hydrological models are becoming 

more common and relevant because they also provide information about internal watershed 

processes in large domains, along with predicted hydrographs for all streams in the river 

network. These forecasts are expected to be accurate at the region’s ungauged watersheds 

(Samaniego et al., 2010) as a consequence of appropriate spatial representation of processes and 

parameters in the model.  

Current hydrological models correctly identify many aspects of the streamflow 

hydrographs providing acceptable forecasts. However, they still struggle to reproduce the 

hydrograph recession. According to Mandeville (2016), modelers need to pay more attention to 

storm runoff's slow flow, which is a crucial component of the recession. For regional models, 

recession becomes more challenging because its non-linearity increases with the spatial scale 

(Chen & Krajewski, 2015; Clark et al., 2009; Harman et al., 2009). Landscape properties such as 

the topography, soil, and the stream network seem to be involved in the recession variability 

(Biswal & Marani, 2010; Shaw & Riha, 2012; Tallaksen, 1995). Additionally, human landscape 

and land use interventions, such as tile drainage, alter streamflow and its recession (Schilling et 

al., 2019; Schilling & Helmers, 2008).  

3.1 Issues with the Hillslope Link Model (HLM) in Iowa 

The Iowa Flood Center (IFC) produces flood forecasts for the state of Iowa using the 

Hillslope Link Model (HLM) (Mantilla and Gupta, 2005; Demir & Krajewski, 2013; Krajewski 

et al., 2017; Quintero et al., 2020). The operational HLM represents the hillslope subsurface flux 

using a linear-reservoir equation. According to Quintero et al. (2020), the current HLM 
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configuration accurately estimates peak flows and overall, has an acceptable performance in 

Iowa. However, the model has some limitations capturing the hydrograph recessions and the 

total runoff volume at some locations. The discrepancies between simulated and observed 

recessions are more notable in watersheds that are known to have been modified with tiling. 

Sample streamflow simulation results using the IFC HLM operational model for three Iowa 

watersheds are presented in figure 3.1a, b, and c (in red). The model’s limitations are most 

evident in the watersheds located in the north and west regions of Iowa, where the model has low 

performance in terms of the Kling Gupta Efficiency (KGE) index (fig. 3.1d). We associate the 

model’s poor performance in the region of north-central Iowa, known as the Des Moines Lobe, 

with the widespread use of artificial subsurface drainage (known as tile drains) in the region 

(Schilling & Helmers, 2008). 

 

 

 

Figure 3.1 a) Observed (black) and simulated streamflows by the linear (red) and the non-linear 
(blue) setups at three USGS gauged stations. b) Mean annual KGE performance of the HLM 

linear setup for Iowa between 2002 and 2018. 
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To address these issues, Fonley et al. (2021) developed a subsurface non-linear equation 

that can represent subsurface flow from hillslopes with different steepness and soil 

conductivities, as well as the presence of tile drainage. The blue lines in figure 3.1a to 3.1c show 

the resulting hydrographs using the non-linear equation with parameters corresponding to no tile 

and steepness of 2% (Fonley et al. 2021). Compared with the linear equation of the operational 

HLM, the non-linear equation tends to improve the total streamflow volume and the simulated 

recession shapes. However, we still observe discrepancies (fig. 1.1a and b) attributed to issues 

with parameter values and spatial representation of processes.  

3.2 The diagnostic-prognostic approach 

According to Clark et al. (2011), the development of a hydrological model is subject to 

the hypothesis-testing process. This process evaluates, rejects, and replaces model components. 

We performed a diagnostic-prognostic analysis of the model at 140 USGS gauges in Iowa to test 

the utility of the non-linear equation to represent the hillslope subsurface flux. In this case, we 

adapted the diagnostic-prognostic approach developed in studies on evapotranspiration (Allen et 

al., 2011; Kalma et al., 2008; Sur et al., 2020). Our diagnostic setups have simplified, spatially 

uniform parameter values while the prognostic scenarios use maps to determine parameter 

values. The diagnostic-prognostic approach offers complementary information about the model 

(Yilmaz et al., 2014) and the required independence to perform model comparisons (Crow et al., 

2005).   

According to Quintero et al., (2019), an insightful way to improve models starts with 

model performance verification followed by structure modification. We expanded on this 

approach by using the diagnostic-prognostic analysis to add tools to verify the model’s processes 

and required parameters. In this paper, we first describe the HLM model and the equations 
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governing the hillslope processes. In the description, we include the operational linear equation 

and the non-linear equation to represent subsurface flux in the description. Then, we describe the 

diagnostic and prognostic setups. Finally, we compare the diagnostic and prognostic approach 

results at 140 USGS stations and analyze the parameters’ influence on the model performance.  

3.3 Model description 

The Hillslope Link Model (HLM) represents the hydrological processes at the hillslope 

scale (fig. 3.2a and b) and routes the streamflow through the channel network (fig. 3.2c). At the 

hillslopes, HLM has three storages: ponded surface (𝑆𝑆𝑝𝑝 [𝑑𝑑]), topsoil (𝑆𝑆𝑇𝑇 [𝑑𝑑]), and subsurface 

storage (𝑆𝑆𝑠𝑠 [𝑑𝑑]). The water from the ponded storage can either infiltrate the topsoil 

(𝑞𝑞𝑝𝑝𝑇𝑇 [𝑑𝑑 ⋅ 𝑑𝑑𝑚𝑚𝑚𝑚−1]) or flow as runoff to the channel link (𝑞𝑞𝑝𝑝𝑝𝑝 [𝑑𝑑 ⋅ 𝑑𝑑𝑚𝑚𝑚𝑚−1]). The water in the 

topsoil percolates (𝑞𝑞𝑇𝑇𝑠𝑠 [𝑑𝑑 ⋅ 𝑑𝑑𝑚𝑚𝑚𝑚−1]) to the soil storage. Finally, the water in the soil storage 

seeps into the channel link as subsurface runoff (𝑞𝑞𝑠𝑠𝑝𝑝 [𝑑𝑑 ⋅ 𝑑𝑑𝑚𝑚𝑚𝑚−1]). Evaporation occurs from the 

three storages as a removal of volume from the model. Once in the river network, HLM 

transports the channel water (𝑞𝑞 [𝑑𝑑3 ⋅ 𝑞𝑞−1]) downstream. A detailed description of the hillslope 

and stream routing process can be found in Mantilla & Gupta (2005) and Quintero et al. (2020). 
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Figure 3.2 Hillslope Link Model spatial discretization and schematic of the storages and 
processes represented at the hillslope scale: a) HLM hillslope process using the linear subsurface 
flux equation; b) hillslope process including the active layer (𝛽𝛽), the exponential flux (𝑞𝑞𝑞𝑞𝑠𝑠𝑝𝑝), and 
the tile drainage flux (𝑞𝑞𝑠𝑠𝑠𝑠); c) watershed decomposition into hillslopes and channel links; and d) 
functional form of the subsurface flux in the function of the soil storage (𝑆𝑆𝑠𝑠) after Fonley et. al 

(2021). 

 

The surface runoff, infiltration, and percolation rates are linked through the reference 

speed 𝑣𝑣𝑟𝑟 and the shape of the hillslope. Each hillslope has a parameter 𝑘𝑘2 [min−1] (eq. (3.1)) that 

depends on the hillslope link length (𝑞𝑞𝑖𝑖  [𝑑𝑑]) and area (𝐴𝐴ℎ[𝑑𝑑2]), along with the reference 

velocity 𝑣𝑣𝑟𝑟. The parameter 𝑘𝑘2 is the inverse of the runoff residence time in the hillslope. The 

runoff 𝑞𝑞𝑝𝑝𝑝𝑝 and the infiltration 𝑞𝑞𝑝𝑝𝑇𝑇 are linked to 𝑘𝑘2 through equations (3.2) and (3.3), 

respectively. Also, the percolation rate 𝑞𝑞𝑇𝑇𝑠𝑠 is computed as a proportion of 𝑘𝑘2, expressed by 𝑘𝑘𝑖𝑖. 

Usually, 𝑘𝑘𝑖𝑖 is 2% of 𝑘𝑘2; however, its value may change depending on the soil and topographical 

properties. 
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𝑘𝑘2 = 𝑣𝑣𝑟𝑟 ⋅ �
𝑝𝑝𝑖𝑖
𝐴𝐴ℎ
� ⋅ 60 (3.1) 

𝑞𝑞𝑝𝑝𝑝𝑝 = 𝑘𝑘2 ⋅ 𝑞𝑞𝑝𝑝 (3.2) 

𝑞𝑞𝑝𝑝𝑇𝑇 = 𝑘𝑘2 ⋅ 𝑞𝑞𝑝𝑝 ⋅ 99 ⋅ (1 − 𝑞𝑞𝑇𝑇/𝑇𝑇𝑙𝑙)3 (3.3) 

𝑞𝑞𝑇𝑇𝑠𝑠 = 𝑘𝑘2 ⋅ 𝑞𝑞𝑇𝑇 ⋅ 𝑘𝑘𝑖𝑖 (3.4) 

 

The current HLM setup represents the subsurface flux to the channels (𝑞𝑞𝑠𝑠𝑝𝑝 [𝑑𝑑 ⋅ 𝑑𝑑𝑚𝑚𝑚𝑚−1]) 

with a linear equation (red line on figure 3.2d). The equation releases water to the channel at a 

rate 𝑑𝑑, when 𝑆𝑆𝑠𝑠 is greater than the no-flow threshold (𝑆𝑆𝑜𝑜), as follows,  

 

𝑞𝑞𝑠𝑠𝑝𝑝 = 𝑑𝑑 ⋅ (𝑞𝑞𝑠𝑠 − 𝑆𝑆𝑜𝑜)  (3.5) 

 

 Fonley et al. (2021) developed a set of parameterizations for ordinary differential 

equations that adds a non-linear component to equation (3.5) when 𝑆𝑆𝑠𝑠 is above threshold storage. 

The following exponential equation (continuous line on figure 3.2d) is added to equation (3.5) if 

𝑆𝑆𝑠𝑠 is greater than the activation threshold 𝛽𝛽 [𝑑𝑑], 

 

𝑞𝑞𝑞𝑞𝑠𝑠𝑝𝑝 = 𝛼𝛼(𝑞𝑞𝑠𝑠 − 𝛽𝛽)𝑞𝑞17(𝑠𝑠𝑠𝑠−𝛽𝛽) (3.6) 

where 𝛼𝛼 is a parameter that depends on the hillslope properties, such as its steepness and the soil 

conductivity. Fonley et al. (2021) also developed an exponential equation that applies when the 

hillslope has tiles. The following equation (dashed line on figure 3.2d) is added when 𝑆𝑆𝑠𝑠 is 

greater than the tile relative depth 𝑞𝑞𝑑𝑑  [𝑑𝑑],  

 

𝑞𝑞𝑠𝑠𝑠𝑠 = 𝑐𝑐(𝑞𝑞𝑠𝑠 − 𝑞𝑞𝑑𝑑)𝑞𝑞35(𝑠𝑠𝑠𝑠−𝑠𝑠𝑑𝑑) (3.7) 
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In the described scheme, subsurface flux becomes a set of equations that HLM activates, 

depending on the value of 𝑆𝑆𝑠𝑠 relative to the thresholds 𝑆𝑆𝑜𝑜, 𝛽𝛽, and 𝑞𝑞𝑑𝑑. The segmented subsurface 

runoff is as follows, 

 

𝑞𝑞𝑠𝑠𝑞𝑞 = �
𝑞𝑞𝑙𝑙𝑠𝑠𝑝𝑝 𝑚𝑚𝑖𝑖 𝑆𝑆𝑠𝑠 < 𝛽𝛽

𝑞𝑞𝑙𝑙𝑠𝑠𝑝𝑝 + 𝑞𝑞𝑞𝑞𝑠𝑠𝑝𝑝 𝑚𝑚𝑖𝑖 𝑆𝑆𝑠𝑠 > 𝛽𝛽
𝑞𝑞𝑙𝑙𝑠𝑠𝑝𝑝 + 𝑞𝑞𝑞𝑞𝑠𝑠𝑝𝑝 + 𝑞𝑞𝑠𝑠𝑞𝑞 𝑚𝑚𝑖𝑖  𝑆𝑆𝑠𝑠 > 𝑞𝑞𝑑𝑑

 (3.8) 

 

The relative tile depth (𝑞𝑞𝑑𝑑) is independent of 𝛽𝛽, so either could be larger depending on 

the tile configuration and the hillslope properties. Moreover, if there are no tiles, equation (3.8) is 

limited to its two first expressions. More details on the subsurface equation development can be 

found in Fonley et al. (2021). 

3.4 Diagnostic and prognostic setups 

We used both diagnostic and prognostic approaches to test the performance obtained 

using the non-linear equation. We used the river network for the state of Iowa derived from a 

DEM of 90m and decomposed into about 420,000 individual hillslopes, following the approach 

presented in Mantilla & Gupta (2005). The precipitation forcing corresponds to hourly Stage IV 

QPEs (Reed & Maidment, 1999, Lin, 2011). We forced the evapotranspiration using the mean 

annual monthly values derived from MODIS (Running et al., 2017) for the region. 

Equation (3.8) offers a formulation for the subsurface flux that we want to validate on the 

Iowa domain. In this process, we can fix parameters uniformly over the space or distribute them 

spatially. A uniform setup assumes that each hillslope in the region uses the same model 

parameters, while a distributed setup assumes parameter variability as a function of landscape 

properties. Neither approach is without error because the parameters are only approximate, and 
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they could depend upon unknown factors that are variable in space. The fixed setup is 

unrealistic, and the distributed setup may be subject to spatial errors. However, both approaches 

are complementary. Fixed setups could help assess the ability of equation (3.8) to improve the 

accuracy of simulated streamflow fluctuations. In contrast, a distributed setup helps to validate 

the parameter description given by the map(s). Considering this, we used both approaches to 

validate the new 𝑞𝑞𝑠𝑠𝑝𝑝 equation and to explore the limits of the so-called predefined setups. In the 

case of distributed parameters, we use the steepness of the hillslopes (fig. 3.3a) and the tiles 

localization according to the DNR (fig. 3.3b).  

 

 

Figure 3.3 Maps of the hillslope steepness (a) and tile drainage localization according to the 
Iowa DNR (b). 

 

The model validation consists of comparing fixed (diagnostic) and distributed 

(prognostic) HLM setups (fig. 3.4). The diagnostic setup (fig. 3.4a) shows how different 

formulations could significantly improve the model over the region. On the other hand, the 

prognostic setups (fig. 3.4b) show the improvements and limitations derived from the application 

of “known” spatial variables.  
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Figure 3.4 Diagnostic and prognostic experiment setup: a) diagnostic case with four non-linear 
subsurface flux equations fixed for the domain of Iowa after Fonley et al (2021); b) prognostic 
case, with equations varying with the hillslopes steepness (blue scenario) and the presence of 

tiles (red scenario); and c) percolation rates fixed for the different scenarios. Their combination 
gives us 12 diagnostic scenarios and three prognostic scenarios.  

 

3.4.1 Diagnostic setups 

In the diagnostic setup (fig. 3.4a), we created four parametrizations of equation (3.8) for 

the Iowa domain. The parametrizations range from flat hillslopes (light blue line on figure 13a) 

to steep or tiled hillslopes (red line on figure 3.4a). By combining the four parameterizations and 

the three 𝑘𝑘𝑖𝑖 rates, we obtain 12 diagnostic scenarios (D1 to D12 in figure 3.4c). D1 to D4 use 

𝑘𝑘𝑖𝑖 = 0.02; D5 to D8 use 𝑘𝑘𝑖𝑖 = 0.03; and D9 to D12 use 𝑘𝑘𝑖𝑖 = 0.04. 

3.4.2 Prognostic setups 

In the prognostic setup, we distributed parameter values in function of the hillslopes 

steepness and the Iowa DNR map describing tiles presence (fig. 3.4b). According to Fonley et al. 

(2021), the parameter 𝛼𝛼 of equation (3.6) can be explained by the hillslope steepness (𝛾𝛾ℎ) using a 
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linear equation. Using the following equation, we assigned 𝛼𝛼 to each hillslope, obtaining 

functional forms that oscillate between the blue bands shown in figure 2.1b,  

 

𝛼𝛼 = 𝛾𝛾ℎ(8.5 ∗ 10−8) + 9.48 ∗ 10−7 (3.9) 

 

Additionally, we include equation (3.8) for tiled terrain following the tile distribution 

shown by the map in figure 3.4b. For the tile drainage equation, we use 𝑐𝑐 equal to 5.4 ∗ 10−7 

(see Fonley et al., 2021). Combined with the percolation rates 𝑘𝑘𝑖𝑖 of 0.02, 0.03, and 0.04, we 

developed the prognostic scenarios P1, P2, and P3, respectively (distributed setups in figure 

3.4c). 

3.5 Results  

The KGE equation summarizes the correlation (𝛾𝛾), the mean value (𝜇𝜇), and the deviation 

(𝜎𝜎). Our results suggest that the KGE performance depends heavily on the percolation rate (𝑘𝑘𝑖𝑖). 

With 𝑘𝑘𝑖𝑖 = 0.02 (first row of figure 3.5), all the non-linear setups tend to improve the linear 

model, with significant performance decrease in some events. Conversely, values of 𝑘𝑘𝑖𝑖 equal to 

0.03 and 0.04 do not exhibit a significant KGE change (second and third rows of figure 3.5). 

Cases such as D5 and D11 exhibited a performance like the one obtained by the linear model. 

Other cases, such as D9, resulted in a general decrease in performance. D6, D8, and P2 exhibited 

a slight performance increase. The described results highlight the relevance of the percolation 

rate and the subsurface parameters. The comparison with the linear model shows that equation 

(3.8) can significantly improve the model performance, depending on the parameters. 
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Figure 3.5 Event-based KGEs comparison between the diagnostics setups and the linear model. 
Each row corresponds to a fixed percolation rate. Columns correspond to the four fixed 

equations. The color bar shows the percentage of events that fall at each bin of the 2D histogram. 

 

Differences among the scenarios are highlighted when comparing the performance gauge 

by gauge. First, we choose the diagnostic (D) and prognostic (P) setup with the best performance 

at each gauge. For this, we used the KGE to select the setup outperforming the others at most of 

the events. In figure 3.6, we present the KGE distribution and the percentage of time chosen for 

each scenario. We found similarities between the diagnostic and prognostic chosen setups when 

grouped by the percolation rate values (𝑘𝑘𝑖𝑖). D4 and P1 (𝑘𝑘𝑖𝑖 = 0.02) have a similar KGE 

distribution, as do D8 and P2 (𝑘𝑘𝑖𝑖 = 0.03) and the group that includes D9, D11, D12, and P3 

(𝑘𝑘𝑖𝑖 = 0.04). The similarities among the described groups highlights the relevance of 𝑘𝑘𝑖𝑖. 

Moreover, some differences also highlight the relevance of the equation (3.8) parameters. 
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Figure 3.6 Event-based KGE distribution for the selected scenarios at each station. 

 

The results presented in figure 3.6 follow a spatial distribution. Figure 3.7 shows each 

USGS gauge colored by the diagnostic (fig. 3.7a) and prognostic (fig. 3.7b) setups with the best 

performance. In both cases, the percolation rate defines the spatial distribution. We can identify 

how the chosen setups (fig. 3.7) follow the Iowa landforms to some extent in the diagnostic case 

(see fig. 3.3a). Scenario D12 is recurrent over the Des Moines Lobe and the Northwest Iowa 

Plain. D9 recurs over the Missouri River Alluvial and Loess Hills landforms. D4 dominates over 

the Southern Iowa Drift area. In the remaining regions, we see a mix of scenarios. The spatial 

distribution is similar among the chosen prognostic scenarios (fig. 3.5b) and seems to be highly 

influenced by the percolation rates, represented here by tones of blue (𝑘𝑘𝑖𝑖 = 0.02), red (𝑘𝑘𝑖𝑖 =

0.03), and green (𝑘𝑘𝑖𝑖 = 0.04). 
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Figure 3.7 Spatial distribution of the scenarios with best KGE performance at each USGS 
station: a) results obtained from the diagnostic scenarios; and b) results obtained from the 

prognostic scenarios. The green, red, and blue gauge colors correspond to the percolation rates of 
0.02, 0.03, and 0.04, respectively. 

 

According to figure 3.5, the chosen diagnostic and prognostic scenarios share percolation 

rates. However, differences exist in the spatial performance improvement distribution (fig. 3.6). 

Figure 3.6a and b show the diagnostic and prognostic scenarios of KGE improvement with 

respect to the linear model. With only two cases of negative KGE differences (red dots on figure 

17a), the diagnostic scenarios outperform the linear model at almost all the USGS gauges. 

Alternatively, in the prognostic case (fig. 3.6b), the count of negative KGE differences increases 

to 13, while the number of gauges decreases where the improvement is more significant than 0.1 

(yellow). We attribute the prognostic case performance decrease to the parameter’s spatial 

distribution. 
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Figure 3.8 Mean KGE spatial difference of the diagnostic and prognostic scenarios with respect 
to the linear model: a) diagnostic KGE minus linear model KGE; and b) prognostic KGE minus 

linear model KGE. 

 

The prognostic scenario performance decrease happens mostly over the east and west 

regions of Iowa. The most significant decrease happens on the Northwest Iowa Plains landform 

(fig. 3.6b). In this region, the chosen diagnostic setups were D12 and D9 (fig. 3.5a), suggesting a 

mix between tiled terrain and flat hillslopes. Over the Southern Iowan Drift landform area, the 𝑘𝑘𝑖𝑖 

value is the same for the diagnostic and prognostic scenarios. However, the prognostic scenario 

performance declines at several stations in this region. On the other hand, the Iowa Surface 

region exhibits more 𝑘𝑘𝑖𝑖 discrepancies between both scenarios, as well as more performance 

differences. 

The described results suggest a level of heterogeneity in the parameters shown by the 

diagnostic and prognostic scenarios. This heterogeneity creates difficulties when choosing the 

most adequate regional parameterization for the model, regardless of whether it is fixed 

(diagnostic) or distributed (prognostic). To address this issue, we compare the KGE (upper 

diagonal in figure 3.7) and the mean ratio (lower diagonal in figure 18) of the chosen scenarios. 

According to figure 3.7, the KGE and mean ratio of scenarios D4 and P1 outperform almost all 
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the scenarios. Additionally, both scenarios have the highest percentage of events with KGE 

values above 0.4 (blue bars in figure 3.7 histograms). Compared with the linear model, D4 and 

P1 mean ratio correction is significant. In both plots (Linear-D4 and Linear-P1), there are almost 

no events where the linear setup outperformed D4 and P1.  

 

 

Figure 3.9 Event-based KGE comparison of the diagnostic and prognostic dominant scenarios. 
Each row compares a scenario against the others. The upper diagonal panels correspond to the 
KGE histogram of the scenarios. Over the diagonal shows the KGE histogram of each setup 

coloring in blue the percentage of events with a KGE above 0.4. The lower diagonal compares 
the event based mean ratio error. 

 

The scenarios D4 and P1 have the same 𝑘𝑘𝑖𝑖 (0.02) value; however, their subsurface 

parameters are different. The parameters of D4 are fixed for all the domains following line 4 of 

figure 2.1a. This parameterization represents highly conductive soils or the presence of tiles. On 
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the other hand, P1 parameters follow the hillslope steepness with equation (3.9), and the 

presence of tiles described by the map in figure 2.1b. The described differences in the parameters 

seem to develop slight dissimilarities in the performance. According to panel D4-P1 in figure 

3.7, the KGE performance is similar in both, although D4 has a better performance in some 

events. Moreover, the panel P1-D4 shows that the mean ratio description of both setups is 

similar. Considering that D4 assumes tiles everywhere, our results suggest a high presence of 

tile-like signatures. 

3.6 Conclusions 

In the diagnostic setup, we implemented 12 fixed parameter scenarios, while in the 

prognostic setup, we distributed the parameters considering the hillslope steepness and presence 

of tiles. In both cases, we considered three fixed percolation rates. Results from this study 

indicate the following: 

1. Compared with the linear equation, the exponential equation corrects the volume bias on 

the simulated streamflow. We attribute the correction to the active layer threshold on the 

exponential equation and the significant outflow increase once the storage is above this 

threshold. By contrast, in the linear equation, the water remains in the soil for extended 

periods because of the described absence of these processes.  

2. Depending on the parameters, the exponential equation could improve the performance of 

HLM. We found that the exponential equation outperforms the linear equation for several 

parameter combinations with changes in the shape of the hydrograph, the simulated 

peaks, and the timing. We also found significant differences using different combinations 

of the equation parameters and the percolation rate. 
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3. The percolation rate plays a significant role in the representation of the subsurface flux 

from the described combinations. We found spatial coincidences in the percolation rates 

when choosing the best diagnostic and prognostic scenarios. Also, the percolation rate 

induces changes comparable with those produced by the exponential equation’s 

parameters. 

4. Determining the distributed parameters of HLM remains challenging. In this paper, we 

used the diagnostic and prognostic approach to analyze the parameters of HLM. The 

diagnostic approach assumes unknown conditions and fixed parameters over the space. 

On the other hand, the prognostic method is the more classical approach, in which the 

parameters are derived from maps of the landscape. In our experiments, the diagnostic 

setups tended to outperform the prognostic setups. Additionally, we found it hard to 

identify a link between the diagnostic and prognostic parameters and their respective 

performances.   

We showed how a better representation of the processes and the correct parameters can 

improve a hydrological model. The improvement is supported by comparisons performed at 140 

USGS gauges. Moreover, the differences between the diagnostic and prognostic setups suggest 

that identifying the parameters is still challenging. Despite the limitation of the number of 

gauges, the diagnostic approach reveals the parameters’ potential spatial distribution.  

Two main factors may explain the differences in parameters and performance between the 

diagnostic and prognostic setups: errors in the landscape description and unrepresented processes 

in HLM. Uncertainties exist in the tile localization maps; likewise, limitations exist in the 

representation of the average steepness at the hillslope scale. On the other hand, we have 

unrepresented processes in some regions of Iowa, such as potholes over the northwest and 
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agricultural terraces in the west. It is difficult to identify which one of these factors is more 

relevant to the implementation of a hydrological model. However, according to our results, the 

use of maps as landscape descriptors may lead to errors that are usually hidden in a posterior 

calibration process. Moreover, we found it hard to identify the errors caused by prescribed 

distributed parameters. Both issues could be addressed using diagnostic setups that help identify 

the uncertainties derived from the parameters and their possible regional distributions. 
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Chapter 4 Technology transfer. 

In addition to the model improvements, we have also been working in transferring our 

technology to the University of Nebraska. The steps involve the back and front end of the 

platform. The back end includes the installation of the HLM model, watersheds delineation, 

HLM files configuration, acquisition of USGS streamflow information, and rainfall data 

processing. The front end includes the setup of the web page that deploys the HLM simulations 

results, the USGS data, and the metrics of the model performance. At the current stage, the setup 

has the watershed delineation, topology extraction, the USGS data, and the deployment of the 

web page. In figure 4.1 we present a snapshot of the setup done at the Elkhorn Watershed at 

Nebraska. In the current report, we describe in detail the steps followed starting from the data 

download to its deployment on the platform.  

 

 

Figure 4.1 Elkhorn Watershed setup using HydroVise software.  URL: 
http://visualriver.net/hygis.html?config=http://s-iihr51.iihr.uiowa.edu/~nicolas/elkhorn.json 

 

To setup the HLM model and the platform, we first performed the pre-processing of the 

data, and then, we configure HydroVise (Jadidoleslam et al., 2020) for the web platform (fig. 
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4.2). In the pre-processing we obtain the hydrological features for the region and downloaded the 

USGS streamflow gauge data. To obtain the hydrological features we start by downloading the 

rasters containing the DEM (Digital elevation model) for the region, and ended with vector 

layers describing the watershed, and the files required to run HLM. On the other hand, to 

download the USGS streamflow gauge data we use a Python script that uses the official USGS 

database. Then, we upload the obtained maps and time series to a Linux server. In the server, we 

configured HydroVise (https://github.com/njadid/HydroVisE) to show the results in an 

interactive web platform. 

 

 

Figure 4.2 Schematics of the steps followed for the setup of the Elkhorn watershed. Blue items 
indicate data elements, Green corresponds to software packages and programs, and Yellow 

corresponds to processed products. 

 

4.1 Watershed delineation. 

The shape of the watershed, its hillslopes, and its network depends mostly on the 

landscape and the topography of the region. A good descriptor of the landscape topography are 

https://github.com/njadid/HydroVisE
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the DEMs (Digital elevation models). A DEM is a raster map that describes the elevation 

variability by cells of a certain resolution or scale. Depending on its size and the DEM pixel 

scale, a watershed could be contained in one or more DEM. For the current case, we downloaded 

the 1/3 arc-second DEM provided by the USGS at their web service TNM (The National Map 

viewer, url: https://viewer.nationalmap.gov/basic/). In total, we downloaded eight DEM maps 

each one with a resolution around 10 meters (see fig. 4.3).   

 

 

Figure 4.3 USGS DEM download from TNM (The national map viewer). The blue regions 
correspond to the DEM downloaded to delineate the Elkhorn Watershed. 

 

The DEMs default projection is NAD-83, this projection is not suited for the web 

platform and the rainfall products. After downloading all the data, we re-project the DEMs to 

WGS-86. To perform the re-projection, we use gdalwarp (Contributors, 2020). In this process 

we also change the pixel size of the DEMs. Although the procedure is done by GDAL, we 

https://viewer.nationalmap.gov/basic/
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perform it using QGIS 3.12 (Project, 2020) in a Windows 10 system. However, the procedure 

can be easily done in a terminal using the following command: 

gdalwarp -r near -of GTiff -ts 1205 0 original_dem.tif  processed_dem.tif  

In the gdalwarp command -r near stands for the type of interpolation to be done for the 

reprojection. In this case it is nearest neighbor. The option -of Gtiff stands for the output format 

which in this case is GeoTiff. The option -ts determines if there is going to be a resample of the 

original raster. In this case, the 1205 is the new number of rows (originally 10812) and the 

number of columns. When both numbers are equal to zero, gdal reshapes the raster to fit the 

given non-zero value. In this case, with 1205 rows, we change the pixel size to 74m.   

The reprojection process can also be done using the Qgis GUI. To access it the user must load 

the raster maps to Qgis and then go to Raster -> Projections -> Warp(Reproject). The program 

will pop-up a window with the options to select the map (or maps) to reproject, and several 

options (fig. 4.4). 
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Figure 4.4 Snapshot of the Qgis Warp(reproject) function used to change the DEMs projection. 

 

After the reprojection we merge the DEMs into one large raster that contains the Elkhorn 

watershed. To perform the merge, we use the Merge tool in Qgis. To open this tool the user must 

go to Raster -> Miscellaneous -> Merge.  In this process the user must select the input DEMs and 

the destination folder and name of the merged DEM.  

 



37 

 

 

Figure 4.5 Snapshot of the Qgis Merge function used to create the DEM that contains the 
Elkhorn watershed. 

 

We proceed to process the merged DEM to obtain the flow direction map or DIR. In this 

case we use the function r.watershed from GRASS (Team, 2017) to process the DEM. The 

function uses the 𝐴𝐴𝑇𝑇 algorithm (Ehlschlaeger, 1989) to process the DEM obtaining several maps. 

To use r.watershed, the user must first setup a project on GRASS or use the function directly on 

Qgis through the toolbox option. Once the project is setup, the first step consists on importing the 

DEM map into GRASS. Then, the GRASS computational extent must be set to match the DEM 

extension. This procedure can be done once the map is loaded into the project. At the display 

panel the user must right click on the map and select the option “Set computational region from 

selected map”. Once this step is done, the user must select r.watershed function, which is found 

under Raster -> Hydrologic Modeling. The function will prompt a new window (fig. 4.6) 

containing several tabs. In this case we select the loaded DEM as the input elevation map on the 

Input tab, and we write down the name of the DIR map on the “Name of output drainage 
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direction raster map” on the Output tab. We then click the Run button, and after several seconds 

the DIR map is loaded. Finally we export the DIR map to a GeoTiff format by using the 

r.out.gdal GRASS function. 

 

   

Figure 4.6 Snapshot of the GRASS with the Merged DEM loaded and the r.watershed window. 

 

Once we have the DIR map, we proceed to extract the watershed and its features. For this 

procedure we use the WMF (watershed modelling software). WMF (Velásquez et al., 2020) is an 

open Python toolbox that allows the delineation, interaction, and analysis of watersheds using a 

DEM and a DIR map. The toolbox could be found in the following github repository: 

https://github.com/nicolas998/WMF. WMF could be installed in a Linux machine through the 

terminal by cloning the github repository and installing the package with the python installer: 

git clone  https://github.com/nicolas998/WMF 

cd clone_dir/WMF/       

python3 setup.py install –user  

https://github.com/nicolas998/WMF
https://github.com/nicolas998/WMF
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In windows the package could be installed using the Anaconda terminal and the 

MigWin64 package.  

To work with WMF the user must use a Python script or terminal (like jupyter). Once in 

Python, the procedure starts by loading the DEM and DIR maps. Then, to obtain a more accurate 

result, the user can obtain the stream given by a particle that travels from any point inside the 

watershed to its outlet. Finally, the user must give the coordinates of the output of the watershed 

to obtain it. The described steps are as follows: 

 

 

 

In WMF the watershed is considered a Python class that has many properties and 

functions. Among them, there are functions to save the watershed boundary and its network as 

vector layers. Also, there are functions to write the files required by HLM for its execution. The 

following code writes the described maps and files: 
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The described procedure was followed to obtain the network and the boundary of the 

Elkhorn watershed shown in figure 1.1, and to obtain the boundary of the watersheds that 

correspond to the USGS gauges.   

4.2 Stream gauge data 

The setup of the USGS streamflow gauges involves the localization of the required 

gauges and its posterior download. First, we obtain the spatial localization of the streamflow 

gauges by downloading the GageLoc.shp vector layer from the USGS science base catalog 

(shortened url: https://bit.ly/3o9OG4P). Then, we select the gauges that are inside of the 

watershed boundary polygon obtained at the previous step. Finally, we downloaded the data 

using the Python package climata. The following example shows how the information was 

downloaded and saved as CSV (comma separated value) files.  

 

 

 

4.3 Web platform setup 

HydroVise supports the web platform putting together the vector and time series 

information. We setup HydroVise in a Linux machine by cloning it from its repository 

(https://github.com/hydrovise/HydroVisE) and adding it to the Apache web-server directory. 

Then, we upload the required information into a folder of the project. The folder contains a 

https://github.com/hydrovise/HydroVisE
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configure.json, the GeoJson files of the vector layers, a metric.csv and flood.csv files, folders 

with the time series in csv format, and a folder with the boundary polygons of the watersheds. In 

figure 4.7 we show the current structure of the project. 

 

 

Figure 4.7 Structure of the HydroVise setup for the Elkhorn watershed project. Yellow elements 
correspond to folders, green to GeoJson and kml files, the orange to CSV files, and blue to json 

files. 

 

Each type of file has its role in the setup of HydroVise. The configure.json controls the 

layers and time series that are going to be shown on the platform. The GeoJson and kml files are 

the map layers present on the platform. The gauges.geojson is a MultiPoint file with a high level 

of interaction. This layer can change its colorbar in function of the metrics.csv file and shows the 

observed and simulated streamflow records. The streamflow_network.geojson and the kml of the 

watersheds are present for graphical reasons. The streamflow_network.geojson is loaded from 

the beginning and HydroVise colors the channel segments in function of the Horton orders 

described in the file. The kml of the network corresponds to the boundary polygons 
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corresponding to the gauges.geojson watersheds. Finally, time series are stored by product and 

by year in a CSV format. In the current case, we setup a folder for the USGS observations, and a 

folder for the HLM simulations. Nevertheless, the project could contain more folders with times 

series.  

The connection among the data is given by an identifier that is present at the 

gauges.geojson, the metrics.csv, the name of the watersheds, and the name of the CSV time 

series files. The identifier could be the link ID of the channel segment corresponding to a USGS 

gauge or it could be the identification number of the station. In this case, we choose the USGS 

number as the identifier. The identifier number is present at the metrics.csv file as the lid 

column (fig. 4.8) and at the gauges.geojson (fig. 4.9). 

 

 

Figure 4.8 Example of a metrics.csv file. The file must contain the columns year, lid, and prod, 
the remaining fields are optional and could contain statistics of the data or information about the 

model performance. Each row contains the data for a given year and place of interest.  
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Figure 4.9 Example of a gauges.geojson file.  The file can contain additional information about 
each point, however, it must have the lid field. 

The web platform could be accessed once the files are on the server and the config.json 

file is set. To access the web platform the user must give HydroVise the path to the config.json 

file. The following command gives an example of how to perform this final task: 

http://your-web-server-address/HydroVisE.html?config=config.json 
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Chapter 5 Conclusions 

 An important aspect in providing a safe, efficient, and effective transportation system is 

anticipating natural hazards that can lead to road closures. Extreme floods can lead to bridge 

overtopping and/or compromising the structural integrity of river overpasses, including box 

culverts. The flood forecasting model and information system proposed here provides a tool to 

anticipate potential hazardous situations related to floods. It would allow time for the activation 

of action plans to minimize the impact on the overall transportation system. The forecasting 

model can be used in real time to anticipate floods and to look at past flooding scenarios to 

determine if all the actions taken were appropriate or can be improved. Our forecasting system 

will contribute to improving safety and minimizing risk associated with increasing multi-modal 

freight movements on the U.S. surface transportation system by enhancing safety and providing 

warning of potential road closures. 

 As part of this project, we have provided a prototype forecasting web platform with four 

specific innovations. 1) Forecasts at critical river/road intersections, 2) Spatial animated maps of 

flood evolution into the future, and 3) a measure of forecast accuracy at the newly incorporated 

forecast bridges. Our developments give us confidence that we can continue moving forward in 

developing a forecasting system that is transferable to other locations in the Midwest. As floods 

continue to be the most costly disaster in the nation, it becomes critical that tools are develop to 

better predict them. 
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